45 resultados para Glyceryl Trinitrate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) is a major cause of high morbidity and mortality. The reduced availability of nitric oxide (NO) in blood and cerebrospinal fluid (CSF) is well established as a key mechanism of vasospasm. Systemic administration of glyceryl trinitrate (GTN), an NO donor also known as nitroglycerin, has failed to be established in clinical settings to prevent vasospasm because of its adverse effects, particularly hypotension. The purpose of this study was to analyze the effect of intrathecally administered GTN on vasospasm after experimental SAH in the rabbit basilar artery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key step in malignant progression is the acquired ability of tumour cells to escape immune-mediated lysis. A potential mechanism by which tumour cells avoid immune destruction involves the shedding of MHC Class I Chain-Related Protein A (MICA), a Natural Killer (NK) cell-activating ligand, from the tumour cell membrane. Hypoxia has been shown to cause increased MICA shedding; however, this hypoxia-induced effect can be attenuated by pharmacological activation of the cyclic guanosine monophosphate (cGMP)-dependent nitric oxide (NO)-signalling pathway in cancer cells. The primary objective of the present study was to determine whether treatment of tumour-bearing nude mice with the NO-mimetic glyceryl trinitrate (GTN) attenuates in vivo tumour growth and if so, whether this effect is dependent on the presence of an intact NK cell compartment. Results indicated that continuous transdermal administration of GTN (1.8 µg/h) can significantly attenuate the growth of transplanted human DU-145 prostate tumours but that this effect of GTN is lost in mice whose NK-cells have been depleted. Tumours and serum from the mice in this study were analysed to determine whether GTN treatment had any effect on the expression levels of proteins integral to the proposed MICA shedding mechanism; however, the results of these studies were inconclusive. As phosphodiesterase (PDE) inhibition represents a potential method to enhance NO-signalling, experiments were performed to determine whether treatment with the PDE5/6 inhibitor zaprinast could also attenuate hypoxia-induced MICA shedding and decrease in vivo growth of DU-145 tumours. Results demonstrated that treatment with zaprinast (10 mg/kg) significantly attenuates MICA shedding in DU-145 cancer cells and significantly decreases in vivo tumour growth. Taken together, the results of these experiments indicate that GTN attenuates tumour growth by sensitising tumour cells to innate immunity, likely by increasing membrane-associated tumour cell MICA levels through the reactivation of NO-signalling, and that zaprinast decreases tumour growth likely through a similar mechanism. These findings are important because they indicate that agents capable of reactivating NO-signalling, such as NO-mimetics and PDE inhibitors, can potentially be used as immunosensitisers in the treatment and/or prevention of cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deficient trophoblast invasion and spiral artery remodeling are associated with pregnancy complications such as pre-eclampsia (PE) and fetal growth restriction (FGR). Using a model in which pregnant Wistar rats are given daily, low-dose, injections of bacterial lipopolysaccharide (LPS; 10 – 40 µg/kg) on gestational days (GD) 13.5 – 16.5, our group has shown that abnormal maternal inflammation is causally linked to shallow trophoblast invasion, deficient spiral artery remodeling, and altered utero-placental hemodynamics leading to FGR/PE; these alterations were shown to be mediated by TNF-a. The present research evaluated certain consequences of decreased placental perfusion; this was accomplished by examining placental alterations indicative of decreased placental perfusion. Additionally, the role of glyceryl trinitrate (GTN) was determined as a potential therapeutic to prevent the consequences of decreased placental perfusion. Results indicated that dams experiencing heightened maternal inflammation showed significantly greater expression of hypoxia-inducible factor-1a (HIF-1a) and nitrotyrosine, both of which are markers of decreased perfusion and oxidative/nitrosative stress. Contrary to expectations, inflammation did not appear to affect nitric oxide (NO) bioavailability, as revealed by a lack of change in placental or plasma levels of cyclic guanosine monophosphate (cGMP). However, continuous transdermal administration of GTN (25 µg/hr) on GD 12.5 – 16.5 prevented the accumulation of HIF-1a and nitrotyrosine in placentas from LPS-treated rats. These results support the concept that maternal inflammation contributes to placental hypoxia and oxidative/nitrosative stress. Additionally, they indicate that GTN has potential applications in the treatment and/or prevention of pregnancy complications associated with abnormal maternal inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p < 0.05). Relative wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pain relief for removal of femoral sheath after cardiac procedures
Procedures for the non-surgical management of coronary heart disease include balloon angioplasty and intracoronary stenting. At the start of each procedure an introducer sheath is inserted through the skin (percutaneously) into an artery, frequently a femoral artery in the groin. This allows the different catheters used for the procedure to be exchanged easily without causing trauma to the skin. At the end of the procedure the sheath is removed and, if the puncture site isn't "sealed" using a device closure, firm pressure is required over the site for 30 minutes or more to control any bleeding and reduce vascular complications. Removing the sheath and the firm pressure required to control bleeding can cause pain, although this is generally mild. Some centres routinely give pain relief before removal such as intravenous morphine, or an injection of a local anaesthetic in the soft tissue around the sheath (called a subcutaneous injection). Adequate pain control during sheath removal is also associated with a reduced incidence of a vasovagal reaction, a potentially serious complication involving a sudden drop of blood pressure and a slowed heart rate. Four studies were reviewed in total. Three trials involving 498 participants compared subcutaneous lignocaine, a short acting local anaesthetic, with a control group (participants received either no pain relief or an inactive substance known as a placebo). Two trials involving 399 people compared intravenous opioids (fentanyl or morphine) and an anxiolytic (midazolam) with a control group. One trial involving 60 people compared subcutaneous levobupivacaine, a long acting local anaesthetic, with a control group. Intravenous pain regimens and subcutaneous levobupivacaine appear to reduce the pain experienced during femoral sheath removal. However, the size of the reduction was small. A significant reduction in pain was not experienced by participants who received subcutaneous lignocaine or who were in the control group. There was insufficient data to determine a correlation between pain relief administration and either adverse events or complications. Some patients may benefit from routine pain relief using levobupivacaine or intravenous pain regimens. Identifying who may potentially benefit from pain relief requires clinical judgement and consideration of patient preference. The mild level of pain generally experienced during this procedure should not influence the decision as some people can experience moderate levels of pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Nitrate tolerance, the loss of vascular responsiveness with continued use of nitrates, remains incompletely understood and is a limitation of these therapeutic agents. Vascular superoxide, generated by uncoupled endothelial NOS (eNOS), may play a role. As arginase competes with eNOS for L-arginine and may exacerbate the production of reactive oxygen species (ROS), we hypothesized that arginase inhibition might reduce nitrate tolerance.

EXPERIMENTAL APPROACH Vasodilator responses were measured in aorta from C57Bl/6 and arginase II knockout (argII –/–) mice using myography. Uncoupling of eNOS, determined as eNOS monomer : dimer ratio, was assessed using low-temperature SDS-PAGE and ROS levels were measured using L-012 and lucigenin-enhanced chemiluminescence.

KEY RESULTS Repeated application of glyceryl trinitrate (GTN) on aorta isolated from C57Bl/6 mice produced a 32-fold rightward shift of the concentration–response curve. However this rightward shift (or resultant tolerance) was not observed in the presence of the arginase inhibitor (s)-(2-boronethyl)-L-cysteine HCl (BEC; 100 µM) nor in aorta isolated from argII –/– mice. Similar findings were obtained after inducing nitrate tolerance in vivo. Repeated administration of GTN in human umbilical vein endothelial cells induced uncoupling of eNOS from its dimeric state and increased ROS levels, which were reduced with arginase inhibition and exogenous L-arginine. Aortae from GTN tolerant C57Bl/6 mice exhibited increased arginase activity and ROS production, whereas vessels from argII –/– mice did not.

CONCLUSION AND IMPLICATIONS Arginase II removal prevents nitrate tolerance. This may be due to decreased uncoupling of eNOS and consequent ROS production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of the nasal route for drug delivery has attracted much interest in recent years in the pharmaceutical field. Local and principally systemic drug delivery can be achieved by this route of administration. But the nasal route of delivery is not applicable to all drugs. Polar drugs and some macromolecules are not absorbed in sufficient concentration due to poor membrane permeability, rapid clearance and enzymatic degradation into the nasal cavity. Thus, alternative means that help overcome these nasal barriers are currently in development. Absorption enhancers such as phospholipids and surfactants are constantly used, but care must be taken in relation to their concentration. Drug delivery systems including liposomes, cyclodextrins, micro- and nanoparticles are being investigated to increase the bioavailability of drugs delivered intranasally. This review article discusses recent progress and specific development issues relating to colloidal drug delivery systems in nasal drug delivery. © 2006 Bentham Science Publishers Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: 5-Fluorouracil (5-FU) is considered to be the backbone of colorectal cancer (CRC) systemic therapy since the great majority of recommended regimens include its administration. A clinical picture consisting of chest pain, sometimes cardiac enzyme elevation, electrocardiogram abnormalities consistent with myocardial ischemia, and normal coronary angiogram associated with 5-FU administration have been infrequently reported. The clinical dilemma is: Which chemotherapy regimen should we use in CRC patients with a previous acute coronary syndrome (ACS) associated with 5-FU? Case Report: We describe the case of a 55-year-old otherwise healthy woman with metastatic colon adenocarcinoma who presented an ACS probably secondary to arterial vasospasm while receiving continuous intravenous 5-FU infusion (mFOLFOX6 regimen). After the ACS, the patient was treated with raltitrexate plus oxaliplatin (TOMOX) and subsequently with irinotecan plus cetuximab with no other cardiac event. Conclusion: The risk of cardiotoxicity associated with 5-FU is low but real. The probable mechanism is arterial vasospasm, as suggested by our case report. Both the use of the TOMOX regimen and irinotecan plus cetuximab seems to be safe regimens to be considered in this clinical scenario. © 2009 Humana Press Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitroglycerin (GIN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GIN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GIN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GIN pharmacological action at pharmacologically relevant doses. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: This study was undertaken to assess the effectiveness of glyceryl trinitrate (GTN) patches in comparison with beta2 sympathornimetics (beta2) for the treatment of preterm labor. Study design: A multicenter, multinational, randomized controlled trial was conducted in tertiary referral teaching hospitals. Women in threatened preterm labor with positive fetal fibronectin or ruptured membranes between 24 and 35 weeks' gestation were recruited and randomly assigned to either beta2 or GTN with rescue beta2 tocolysis if moderate-to-strong contractions persisted at 2 hours. Obstetric and neonatal outcomes were assessed. Results: Two hundred thity-eight women were recruited and randomly assigned, 117 to beta2 and 121 to GTN. On a strict intention-to-treat basis, there was no significant difference in the time to delivery using Kaplan-Meier curves (P = .451). At 2 hours, 27% of women receiving beta2 had moderate or stronger contractions compared with 53% in the GTN group (P < .001). This led to 35% of women in the GTN group receiving rescue treatment. If delivery or requirement for beta2 rescue are regarded as treatment failure, then a significant difference was observed between the 2 arms (P = .0032). There were no significant differences in neonatal outcomes. Conclusion: GTN is a less efficacious tocolytic compared with beta2 sympathomimetics. (C) 2004 Elsevier Inc. All rights reserved.